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1. Introduction, classification, and methodology 

DC-DC switching converter is an important part of power electronics. In its traditional 

research process, researchers rarely involve nonlinear phenomena in their studies, but in 

the actual design process of switching converter, sometimes it is nonnegligible for a special 

operational condition, some perform abnormal phenomena that the traditional linear 

system description method cannot explain, which indicates the existence of chaos 

phenomenon. 

However, many engineering designers often simply take this phenomenon as unknown 

interference in the converter, even though some experienced designers can change the 

circuit parameters to avoid or diminish this phenomenon, theorizing these engineering 

techniques are still a challenge.  

To lead the practical experiment and eliminate the aforementioned complex behavior 

concerning DC-DC converters. some rapid development of chaotic phenomenon research 

has been processed all over the world, and many achievements have been obtained. This 

report will give a fundamental glimpse to these results, especially relating to the most 

widely deployed voltage-mode controlled buck converters, including its complex behavior 

bifurcations referring to parameter varying, chaos phenomenon research methods in DC 

switching converters, etc. 

1.1 Techniques for Complex behavior research in DC-DC switching converters  

To reveal the nonlinear dynamic behavior of the converter, the key issue is to 

establish a corresponding dynamic model with an appropriate method. At present, two 

analysis methods are mainly used: the first one is to derive the state equation directly 

according to the topology morphing of the system, using KCL law and KVL law to 

establish a unified state equation model, and then perform accurate model simulation; t 

the other one is to derive the system state discrete iterative nonlinear mapping of the 
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system state variable, by deriving its Jacobian matrix, computing eigenvalues to 

determine the system characteristics and stabilities.  

Among them, the former can obtain all the dynamic behavior of the conversion 

system, which tends to be only a numerical calculation for the accurate model, but it 

needs an extremely large amount of calculation for both significant and trivial complex 

behaviors are required to be observed; while the latter can be used to analyze the stability 

of the system, but it is generally only suitable for the analyzing of the first bifurcation 

fork. In short, these two analytical research tools are technically complementary, when 

dealing with a practical system. 

 

Table 1.1. Comparation for two different analysis techniques 

 Complete system state equation  
Discrete iterative nonlinear 

mapping 

Pros 
Accurate, all complex dynamic 

behavior are visible 

Small calculation complexity, 

stability criteria can be easily found 

Cons 

Large calculation complexity, 

numeric simulation relies on 

sufficient resolution 

Only suitable for first fork analysis 

in general 

Visualization 

Phase Portrait 

Bifurcation Plot (sampling) 

Poincaré Map (sampling) 

Bifurcation Plot 

Poincaré Map 

Iterative map 

 

The above chart shows the technique comparison of the complete system state equation 

method and the discrete iterative nonlinear mapping, we can see that both methods have 

their advantages and limitations, but the visualization tools can overlap. This is important 

for our further study, since the bifurcation and chaos phenomenon should be visualized, 

otherwise it will be difficult separating the traditional dynamic system to the chaos 

system. 
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1.2 Complete system state equation method 

The DC-DC converter is a typical piecewise linear system. According to the different 

switching states, Buck converters, Boost converters, Buck-Boost converters, etc. 

generally have two or three operating modes, the former is called continuous conduction 

mode (CCM, composed of two piecewise linear systems), the latter is called 

discontinuous conduction mode (DCM, consists of three piecewise linear systems). 

Continuous conduction mode requires that the inductance in the circuit be large enough, 

if the inductance is less than a certain parameter value, it will switch to discontinuous 

conduction mode. 

The operating mode of the circuit can usually be determined by observing the 

waveform of the inductor current. If we set d to be the duty cycle and 𝑇𝑠 to be the 

switching period. Figure 1.1 shows the continuous and discontinuous state of the inductor 

current. It can be known from analyzing the current waveform diagram that in a 

switching cycle 𝑇𝑠, the 𝑑𝑇𝑠 segment indicates that the switch S is turned on, and the 

diode D is turned off; 𝑑′𝑇𝑠 section indicates that switch S is turned off and diode D is 

turned on; section 𝑑′′𝑇𝑠 indicates that both switch S and diode D are turned off; and in 

discontinuous mode, 𝑑𝑇𝑠 + 𝑑′𝑇𝑠 + 𝑑′′𝑇𝑠 = 𝑇𝑠 is established. 

 
Figure 1.1. The model of circuit 

(a) continuous model   (b) discontinuous model 

 

According to the switching state, we can obtain the state equation of the switching 

converter, which is written as 

𝑥̇ = 𝐴𝑗
 
𝑥 + 𝐵𝑗

 
𝑉𝑖𝑛 1.1 
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where 𝑥 is set as a state variable, 𝐴j
 
 𝐵j

 
, is the coefficient matrix corresponding to a 

piecewise linear system, and has: 

(1) When j=1 (0 < 𝑡 < 𝑑𝑇𝑠), the switch is on and the diode is disconnected; 

(2) When j=2 (𝑑𝑇𝑠 < 𝑡 < 𝑑′𝑇𝑠), the switch is off and the diode is closed; 

(3) When j=2 (𝑑′𝑇𝑠 < 𝑡 < 𝑑′′𝑇𝑠), the switch and diode are both disconnected. 

The advantage of this method is that it does not require simplification and 

approximation of the circuit system, the established equation is an accurate model of the 

circuit system, and the solution of the equation reflects the real physical characteristics of 

the system; but the disadvantage is that it is difficult to analyze the dynamics of the 

system by analytical methods. Learning behaviors such as the stability of various 

bifurcations and periodic orbits can generally only be solved numerically. 

1.3 Discrete iterative nonlinear mapping 

At present, most literatures use nonlinear discrete-time mapping based on the 

concept of discrete-time model when analyzing the nonlinear phenomenon of converters, 

that is, the state of the converter is mapped from one sampling time to the next sampling 

time. This method is used in applications with many advantages in computer numerical 

calculation and reduction of computational load and can successfully analyze the stable 

working state of the converter, bifurcation and other phenomena.  

According to the selection of different sampling times of the converter, discrete time 

mapping can generally be divided into four types, namely stroboscopic mapping, 

synchronous switching mapping, asynchronous switching mapping, and pair-switching 

mapping [1].  

 
Figure 1.2. Illustration of stroboscopic mapping and synchronous switching mapping 
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The first three mappings can be seen in Figure 1.2 (assuming that the converter is in 

continuous conduction mode, there are two phase states corresponding to different 

switching topologies) where the stroboscopic mapping is performed on the converter 

state at the beginning of each PWM cycle. sampling, thus constructing a mapping to 

iterate the state of the converter from one cycle to the next. This mapping method is 

widely used in the study of nonlinear phenomena of converters because of its intuitive 

and convenient construction.  

At an integral multiple of the switching period 𝑇𝑠, the converter may not have phase 

switching, but a skipped period occurs, and the stroboscopic mapping cannot be correctly 

distinguished, so the concept of synchronous switching mapping is proposed, which is 

only in the switching period 𝑇𝑠. The state variable is sampled only when the phase of the 

converter is switched at an integer multiple times (synchronized switching), so it is 

possible to distinguish between the phase switching period and the jumping period [2].  

Asynchronous switching mapping [3] can analyze the situation of multi-pulse M. 

This mapping samples the converter state at the phase switching time (i.e., the 

asynchronous switching time) within the switching cycle, so its sampling time is not 

synchronized with the switching cycle, and the paper [3] constructed the mapping from 

one asynchronous switching moment to the next asynchronous switching moment by 

taking the converter state variable and duty cycle as the mapping variables. Based on this, 

the analytical conditions for bifurcation in the converter were obtained. 

 

Figure 1.3. The circumstances of two-by-two mapping 

 

When there is no trigger in the feedback loop, multiple phase switching may occur in 

one switching cycle (i.e., multi-pulse phenomenon, as shown in Figure 1.3). Currently, 



DYNAMIC ANALYSIS OF VOLTAGE MODE BUCK CONVERTER 

the most reasonable analysis method is to use paired switching mapping. The phase 

switching process of the converter is always fixed, that is, after an initial time 𝑡2𝑗, the 

converter is in phase 1, and the phase remains unchanged until 𝑡2𝑗+1, then the converter 

switches to phase 2 in the interval (𝑡2𝑗+1~𝑡2𝑗+2), and then start the next round of phase 

switching, so that the switching sequence "phase 1-phase 2" constitutes a paired phase, 

the paired switching mapping is the state of the sampling phase pair at the initial moment, 

thus forming a phase pair interval mapping for the state variable. 

The advantage of this method is that it is easy to comprehensively analyze the 

dynamic properties of the circuit system, such as the stability of fixed points and various 

periodic orbits, the boundary collision bifurcation and the period-doubling bifurcation 

belonging to the high-frequency domain; but the disadvantage is that the circuit system 

must be simplified and approximated in order to derive its discrete iterative nonlinear 

mapping. This makes the dynamic properties of the discrete model different from that of 

the actual circuit system. Besides, only the one-dimensional mapping can obtain a closed-

form, and the two-dimensional mapping can only be obtained by numerical methods in 

general (for a kind of special structure The closed-form two-dimensional mapping of the 

switching power converter can be obtained). 

1.4 Tools for virtualization and description of chaos dynamic 

characteristics in DC-DC switching converters 

In the study of chaos in DC-DC switching converters, power spectrum analysis, 

Lyapunov exponent, Jacobian matrix, bifurcation diagram, Poincaré map, and Geometric 

analysis of strange attractors is the commonly used analysis and description methods. 

a). Lyapunov exponent 

For a dynamic system, the adjacent orbits can be stretched or compressed during the 

evolution of the system, and their rates may be different at different points in the phase 

space. Only by taking a long-term average of the stretching or compression rates at each 
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point the motion of trajectory dynamics can be described. This overall effect of the 

system is the concept of the Lyapunov exponent. 

The positive Lyapunov exponent indicates that the orbit is unstable in each part, the 

adjacent orbits are exponentially separated, and the orbit is repeatedly folded under the 

action of the overall stability factor (bounded, dissipation), forming Chaos attractor. An 

n-dimensional map has n stretching or compression directions, each of which corresponds 

to a Lyapunov exponent.  

Generally, in the study of nonlinear characteristics of second-order converters, the 

concept of the maximum Lyapunov exponent is mostly used. The maximum Lyapunov 

exponent can correspond to three different situations: less than 0, the converter dynamics 

are periodic; equal to 0, the converter The dynamic is quasi-periodic; and greater than 0 

indicates that the converter is in chaotic dynamic [4]. 

b). Jacobian matrix near the equilibrium point 

The Jacobian matrix can be used to analyze the nonlinear characteristics of the 

converter system [5]. There are two methods: one is to establish the Jacobian matrix of 

the periodic mapping, and the other is to establish the Jacobian matrix of aperiodic fixed 

points. 

The common method is the former: a certain parameter 𝐴 of the converter is selected 

as the bifurcation parameter, and the explicit discrete iterative mapping of the DC/DC 

converter can be written as 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝐴) = [
𝑓1(𝑣𝑛, 𝑖𝑛, 𝐴)

𝑓2(𝑣𝑛, 𝑖𝑛, 𝐴)
] 1.2 

Where 𝑥𝑛 = [𝑣𝑛, 𝑖𝑛]𝑇 is the state variables of iterative map. 

Then the Jacobian matrix will be: 

𝐽𝑓(𝑥𝑄) =

[
 
 
 
 
𝜕𝑓1
𝜕𝑣𝑛

𝜕𝑓1
𝜕𝑖𝑛

𝜕𝑓2
𝜕𝑣𝑛

𝜕𝑓2
𝜕𝑖𝑛]

 
 
 
 

1.3 

In the formula, 𝑥𝑄 is the equilibrium point of the discrete time periodic mapping, 

and the characteristic equation of the converter is 

𝑑𝑒𝑡[𝜆𝐼 − 𝐽𝑓]|𝑥𝑛=𝑥𝑄,𝐴𝑛=𝐴𝑄
= 0 1.4 
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Solving this equation, the value of 𝐴 whose characteristic value is -1 is the 

bifurcation point (that is, the bifurcation from the period 1 orbit to the period 2 orbit); 

Similarly, if the second bifurcation occurs in the converter (that is, the bifurcation from 

the period 2 orbital to the period 4 orbital), the eigenvalue of the discrete-time map 

𝑓[𝑓(𝑥𝑛, 𝐴)] is set at the -1. 

c). Poincaré map, bifurcation diagram, strange attractor 

Poincaré invented a method to describe the structure of strange attractors. This 

method is to cut a two-dimensional cross section from the strange attractors, which is 

called Poincaré cross-section. 

On this section, the orbit first produces an intercept point 𝑥1, and the next period it 

intersects the section on 𝑥2, so it is called as 𝑥1 is mapped to 𝑥2, likewise, 𝑥2 will be 

mapped to 𝑥3 . . . This establishes the mapping relationship between discrete point 𝑥𝑛: 

𝑥𝑛+1 = 𝑓(𝑥𝑛) 1.5 

This mapping is called the Poincaré map. The Poincaré section makes the complex 

motions observable through the Poincaré map, which greatly simplifies the problem. This 

section reduces the dimension of the attractor by one dimension, transforms the 

continuous time evolution into a discrete map, which compresses a lot of secondary 

information and is easy to handle mathematically, which brings great convenience to 

research.  

If the system performs simple periodic motion, then the orbit passes through the 

section at the same place each time, and there is only one fixed point on the section; if it 

is 2 times the period, there are two intercept points on the section, and if it is 4 times the 

period, there are 4 intercept points on the section. point. If the system performs quasi-

periodic motion, then the intersection points on the section constitute a closed curve; if 

the motion is aperiodic, there will be infinitely many points on the section. Therefore, 

from the Poincaré section, the nature of the motion of the system can be immediately 

judged quality. Figure 1.4(a) shows the Poincaré cross-section.  
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Figure 1.4 (a) Poincaré section    (b) bifurcation diagram 

Similarly, the bifurcation graph also plays an important role in the nonlinear dynamic 

research of the converter. The construction method is based on the Poincaré section 

generated by discrete-time mapping. A certain state variable of the Poincaré section can 

be selected as the bifurcation diagram. One-dimensional coordinates in the bifurcation 

diagram and the other dimension of the bifurcation graph correspond to the change of 

bifurcation parameters.  

In this way, the bifurcation diagram can provide an overview of the changes in the 

dynamic characteristics of the system as the parameters change. DC-DC. The dynamic 

characteristics of the DC switching converter may change with the change of any 

adjustable parameter value. Therefore, there are many kinds of bifurcation parameters in 

the bifurcation diagram. The PWM period, circuit element parameter values, and 

reference signal can be considered. value, feedback loop factor, etc. Figure 1.4(b) shows 

the bifurcation diagram of the logistic map. 
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2. Complex behavior and its analysis in CCM VCM buck converter 

The voltage-mode control Buck converter is a DC-DC converter with voltage as the 

control object. Its basic circuit topology is redrawn in Figure 2.1(a). It is a typical PWM 

control system, which may produce various linear and nonlinear phenomena, such as 

bifurcation, chaos, boundary collision, cataclysm, intermittent, attractor coexistence, etc.  

 

  

Figure 2.1. Voltage mode buck converter  

(a) Circuit diagram      (b) The key waveform 

 

Its main circuit consists of an inductor, capacitor, switch, diode, and load resistor 

respectively. In order to facilitate the analysis of the working principle of the circuit, it is 

necessary to make two approximations: 

(1) Assuming switch G and diode D are ideal switching devices, that is, they can be 

"on" and "off" instantaneously, when "on" occurs, and the voltage is 0V when "off" 

occurs, and the current is 0A; 

(2) Assuming the capacitor and the inductor are ideal components without parasitic 

parameters. 
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2.1 Complete system state equation for CCM VCM buck converter 

According to the different states of switch G, the topology of the buck converter 

changes, there are two main circuit topologies corresponding to the two states of switch 

G: 

When u=1, the switch G is closed, the diode D is subjected to the reverse voltage and 

turned off, and the input power Vin and the inductor L and the RC output part are 

connected in series, this is the energy input stage, and the current rises almost linearly; 

When u=0, the switch G is turned off, the diode D is turned on under the forward voltage, 

and the inductor L is only connected in series with the RC output part, forming a path for 

the inductor current, and the inductor current decreases almost linearly through the diode 

and the load. 

The differential equations corresponding to the above two main circuit topologies 

can be described as: 

 

𝑥̇ = [
−/𝑅𝐶 1/𝐶
−1/𝐿 0

] 𝑥 + [
0

1/𝐿
] 𝑉𝑖𝑛 = 𝐴𝑜𝑛 𝑥 + 𝐵𝑜𝑛 𝑉𝑖𝑛   when G is on 2.1 

  when G is on 

𝑥̇ = [
−/𝑅𝐶 1/𝐶
−1/𝐿 0

] 𝑥 + [
0
0
] 𝑉𝑖𝑛 = 𝐴𝑜𝑓𝑓

 
𝑥 + 𝐵𝑜𝑓𝑓

 
𝑉𝑖𝑛    when G is off 2.2 

𝑥 = [𝑉𝑜 𝑖𝐿]
𝑇 is the state-variables for the system, and 𝐴 and 𝐵 are the coefficient 

matrix of the system. 

According to these two equations in the formula, the unified state equation including 

the control signal 𝑆 can be described as: 

𝑥̇ = [
−/𝑅𝐶 1/𝐶
−1/𝐿 0

] 𝑥 + [
0

𝑉𝑖𝑛/𝐿
] 𝑆(𝑑) 2.3 

2.2 The structurable numerical modeling in Matlab 

Generally, the closed-loop control system of the DC-DC switching converter belongs 

to the PWM system, which is a non-autonomous nonlinear system. When we establish its 

numerical simulation model, there are two methods that can be used: one is to ignore the 

time variables and establish the autonomous system model which can be used for 
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numerical simulation and dynamic characteristic analysis; another method is that time 

can also be regarded as a state variable to establish the non-autonomous system model of 

the converter.  

On the basis of the circuit analysis of the aforementioned buck converter and 

considering the definition of autonomous and non-autonomous systems, we can establish 

its numerical simulation model. The following simulation uses Matlab Simulink as a tool 

to introduce numerical simulation. 

According to the different control signals 𝑆(𝑑) of the switch G, the converter has 

two working states, as shown in formula below. Unifying these two cases, the variable 

structure differential equation of the converter can be obtained as: 

𝑉𝑜̇ =  
𝑖𝐿 − 𝑉𝑜/𝑅

𝐶
2.4 

𝑖𝐿̇ =  
𝑆(𝑑)𝑉𝑖𝑛 − 𝑉𝑜

𝐿
2.5 

We also need the equation to relate feedback with control signal 𝑆(𝑑). in the voltage 

mode control mode, this relationship is constructed by amplifying the error signal:  

difference between output voltage 𝑉𝑜 and 𝑉𝑟𝑒𝑓, to generate control voltage signal 𝑉𝑐𝑜𝑛 , 

we can write this as: 

𝑉𝑐𝑜𝑛 (𝑡) = 𝐾 (𝑉𝑜 − 𝑉𝑟𝑒𝑓
 

) 2.7 

Where the K is the amplifying gain, then by comparing this 𝑉𝑐𝑜𝑛 with a clock ramp 

𝑉𝑟𝑎𝑚𝑝
 

, the comparing output will be the control signal 𝑆(𝑑). 

𝑉𝑟𝑎𝑚𝑝
 

(𝑡) = 𝑉𝐿 + (𝑉𝑈 − 𝑉𝐿)𝑡/𝑇𝑠 2.8 

𝑆(𝑑) = {
𝑢 = 0      𝑤ℎ𝑒𝑛 𝑉𝑟𝑎𝑚𝑝

 < 𝑉𝑐𝑜𝑛 

𝑢 = 1      𝑤ℎ𝑒𝑛 𝑉𝑟𝑎𝑚𝑝
 

> 𝑉𝑐𝑜𝑛 
2.9 
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Figure 2.2. Simlink model of CCM buck under voltage mode control 

According to equation (2.4, 2.5), the accurate Simulink segment switch model of 

Buck converter was constructed, as shown in Figure 2.2, in which two integral modules 

𝑉𝑜 and 𝑖𝐿 are used to realize the two differentials of equation (2.4, 2.5). Submodule 

ramp generator produce the sawtooth wave signal with a period of 𝑇𝑠, the control voltage 

signal 𝑉𝑐𝑜𝑛  realizes the formula (2.7), and the control signal 𝑆(𝑑) in the formula (2.9) 

is finally obtained by using the subtraction between the two signals. 

Non-autonomous system 

In essence, the PWM control system is a non-autonomous dynamic system, the 

description equation contains time variables. For example, the sawtooth wave in the Buck 

converter is a periodic signal related to time, see equation (2.10). In the non-autonomous 

system model of the buck converter, the structure of the sawtooth sub-module 𝑉𝑟𝑎𝑚𝑝
 

 is 

shown in Figure 2.3. The output of the integration module is the result of integrating the 

constant l, that is, the time variable t is obtained. In the following simulation or 

calculation, we will replace the time variable t with the output 𝑉𝑟𝑎𝑚𝑝
 

. 

𝑉𝑟𝑎𝑚𝑝
 

(𝑡) = 𝑉𝐿 + (𝑉𝑈 − 𝑉𝐿)𝑡/𝑇𝑠(𝑚𝑜𝑑1) 2.10 



DYNAMIC ANALYSIS OF VOLTAGE MODE BUCK CONVERTER 

 
Figure 2.3. autonomy model of sub-module 𝑽𝒓𝒂𝒎𝒑

 
 

 

2.3 Analysis using bifurcation diagram and Poincaré map 

The elements value we choose to running the simulation are as follows: 𝑉𝑖𝑛 =

20~35𝑉, L=10~20mH, C=20~80µF, R=22 Ω, K=8.3, Ts=400 µs, 𝑉𝐿=3.8 V, 𝑉𝑈 = 8.2 V, 

it should noted that while runing the simulations to generate the bifurcatio map, only one 

parameter in all the parameters can varing. 

 

 

(a) 𝑽𝒊𝒏 as bifurcation parameter 

32.6V 

24.5V 

31.2V 

Stable Period-doubling 

Period-4 

Chaos 
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(b) L as bifurcation parameter 

 

(c) C as bifurcation parameter 
Figure 2.4. Bifurcation diagram with (a) 𝑽𝒊𝒏 (b) L (c) C as bifurcation parameter 

a). 𝑽𝒊𝒏 as bifurcation parameter 

In the bifurcation diagram with the input voltage 𝑉𝑖𝑛 as a parameter, we can find a 

variety of complex bifurcation behavior. First, it can be seen from the main bifurcation 

line that there is a period-doubling bifurcation; secondly, the main bifurcation finally 

undergoes a radical change at 𝑉𝑖𝑛 ≈ 32.6𝑉 and enters into chaos; in addition, at the 

same time as the main bifurcation begins, three attractors can be found. The coexistence 

phenomenon is most obvious and has a clear bifurcation structure when the input voltage 

18.2mH 

Period-doubling 

Stable 

Period-4 

Chaos 

51uF 

Stable 

Period-doubling 

Period-4 
Chaos 
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𝑉𝑖𝑛 is between 31.2V and 32.6V, which is the bifurcation structure starting with period 6, 

and the two coexisting bifurcations both eventually develop towards a chaotic state. 

b). L as bifurcation parameter 

In the bifurcation diagram with the inductance L as the parameter, we can find that 

when the value of the inductance is small, the system is in chaos operation.  

With the increase of the inductance L, the system enters period-four bifurcation from 

chaos, then it evolute to the period-doubling bifurcation, until L≈18.2mH, the system 

goes stable. At the same time when the main fork exist, it can also be found that there are 

several attractors coexist. 

c). C as bifurcation parameter 

In the bifurcation diagram with capacitance C as the parameter, we can find that 

when the value of capacitance is small, the system is in chaos operation.  

With the increase of capacitance C, the system enters period-four and then period-

doubling bifurcation from chaos. When C≈28µF, the system is in cycle two, the system is 

stable when C≈30µF; at the same time as the main bifurcation, it can also be found that 

there are coexistence of attractors in many places, too. 

 

 

Analysis using Poincaré map 

The essence behind the Poincaré map is much like the bifurcation diagram, which is 

thoroughly explained in the introduction part. By mapping the states variables to a section 

plane, the strange attractors can be easier to virtualized.  

In this part we only plot the most obvious example Poincaré map with the varying of 

input voltage, we select below value of: 𝑉𝑖𝑛 = 22𝑉, 28𝑉, 31.5𝑉, 𝑎𝑛𝑑 33𝑉, to see how 

the chaos evolute from one to other. the other circuit elements will be R=22Ω, L=20mH, 

C=47uF, fs =2500Hz. 



DYNAMIC ANALYSIS OF VOLTAGE MODE BUCK CONVERTER 

 

 
Figure 2.5 Poincaré map for (a)𝑽𝒊𝒏 = 𝟐𝟐𝐕 (b) 𝑽𝒊𝒏 = 𝟐𝟔𝐕 (c) 𝑽𝒊𝒏 = 𝟑𝟏. 𝟓𝐕 (d) 𝑽𝒊𝒏 = 𝟑𝟑𝐕 

 

 It can be clearly observed that when 𝑉𝑖𝑛 = 22𝑉 there is only one dot on the phase 

portrait, as the 𝑉𝑖𝑛 increased to 26V, the strange attractor evolute to two, this 

phenomenon replicate the analysis of bifurcation diagram of period-doubling bifurcation, 

as the 𝑉𝑖𝑛 keeps increasing, strange attractors quickly replicate and eventually become 

chaotic as shown in the figure 2.5(d). 

2.4 Theoretical analysis using iterative mapping 

Now, we consider establishing a discrete iterative mapping (Poincaré map) and 

perform stability analysis through the calculation of eigenvalues.  

Using the method of stroboscopic mapping, the circuit state variables are discretized, 

that is, sampling is performed every 𝑛𝑇𝑠 time, writing as: 

𝑥𝑛 = 𝑥(𝑛𝑇𝑠) = [𝑉𝑜(𝑛𝑇𝑠), 𝑖𝐿(𝑛𝑇𝑠)]
𝑇 2.11 

The operating waveform of the converter is shown in Figure 2.5(a), in one cycle (such 

as 𝑘𝑇𝑠 ~ (𝑘 + 1)𝑇𝑠) the converter will experience 2 different phases: 

Strange 

Attractor 
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(1) When 𝑡 = 𝑡𝑛~𝑡𝑛+𝑑̅, switch is in "off state”, when this interval ends, the state-

variable is 𝑥𝑛+𝑑̅. 

𝑥𝑛+𝑑̅ = 𝑓𝑜𝑓𝑓(𝑥𝑛, 𝑑̅𝑛) = 𝑁𝑜𝑓𝑓 (𝑑̅𝑛)𝑥𝑛 + 𝑀𝑜𝑓𝑓(𝑑̅𝑛)𝑉𝑖𝑛 2.12 

(2) When 𝑡 = 𝑡𝑛+𝑑̅~𝑡𝑛+1  switch is in “on state", when this interval ends, the state-

variable is 𝑥𝑛+1. 

𝑥𝑛+1 = 𝑓𝑜𝑛(𝑥𝑛+𝑑̅ , 𝑑̅𝑛) = 𝑁𝑜𝑛 (1 − 𝑑̅𝑛)𝑥𝑛+𝑑̅ + 𝑀𝑜𝑛(1 − 𝑑̅𝑛)𝑉𝑖𝑛 2.13 

Combining (2.12, 2.13), we can obtain the iterative mapping in the form of: 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑑̅𝑛) 

= 𝑁𝑜𝑛 (1 − 𝑑̅𝑛)𝑁𝑜𝑓𝑓 (𝑑̅𝑛)𝑥𝑛 + [𝑁𝑜𝑛 (1 − 𝑑̅𝑛)𝑀𝑜𝑓𝑓(𝑑̅𝑛) + 𝑀𝑜𝑛(1 − 𝑑̅𝑛)]𝑉𝑖𝑛 2.14 

Where, 

𝑑̅𝑛 = 1 − 𝑑𝑛 (1- duty cycle) 

𝑁𝑜𝑛 (1 − 𝑑̅𝑛) =  𝑒𝐴𝑜𝑛𝑑𝑇𝑠 

𝑀𝑜𝑛 (1 − 𝑑̅𝑛) = 𝐴𝑜𝑛
−1 (𝑒𝐴𝑜𝑛𝑑𝑇𝑠 − 𝐼)𝐵𝑜𝑛 

𝑁𝑜𝑓𝑓 (𝑑̅𝑛) =  𝑒𝐴𝑜𝑓𝑓𝑑̅𝑇𝑠 

𝑀𝑜𝑓𝑓 (𝑑̅𝑛) = 𝐴𝑜𝑓𝑓
−1  (𝑒𝐴𝑜𝑓𝑓𝑑̅𝑇𝑠 − 𝐼)𝐵𝑜𝑓𝑓 

In addition, we need to derive the duty cycle function, which requires finding the 

relationship between the switching instant and the state variable. To fully understand the 

exact switching timing, the 𝑆(𝑑̅𝑛) should be expand and correspond with state-variables, 

this tie relies on: 

 𝑆(𝑑̅𝑛) = [𝐾 0] [

𝑉𝑜(𝑑̅𝑛𝑇𝑠) − 𝑉𝑟𝑒𝑓
 

(𝑑̅𝑛𝑇𝑠)

𝑖𝐿
 
(𝑑̅𝑛𝑇𝑠)

] − 𝑉𝐿 − (𝑉𝑈 − 𝑉𝐿)𝑑̅𝑛𝑇𝑠 

= [𝐾 0][𝑁𝑜𝑓𝑓 (𝑑̅𝑛)𝑥𝑛 + 𝑀𝑜𝑓𝑓(𝑑̅𝑛)𝑉𝑖𝑛] − 𝐾𝑉𝑟𝑒𝑓
 

− 𝑉𝐿 − (𝑉𝑈 − 𝑉𝐿)𝑑̅𝑛𝑇𝑠 2.15 

Therefore, function 𝑆(𝑑̅𝑛) = 0 defines the timing of switching, where 𝑆(𝑑̅𝑛) < 0 the 

mosfet is on, otherwise mosfet is off. 

𝜕𝑠

𝜕𝑑̅𝑛

= ⌊𝐾 0⌋⌊𝐴𝑜𝑛𝑇𝑠𝑁𝑜𝑛 (1 − 𝑑̅𝑛)𝑥𝑛 + 𝑇𝑠𝑁𝑜𝑓𝑓 (𝑑̅𝑛)𝐵𝑜𝑓𝑓𝑉𝑖𝑛⌋ − (𝑉𝑈 − 𝑉𝐿)𝑇𝑠 2.16 
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𝜕𝑠

𝜕𝑥𝑛
= ⌊𝐾 0⌋𝑁𝑜𝑓𝑓 (𝑑̅𝑛) 2.17 

Also, we can calculate the 
𝜕𝑠

𝜕𝑑̅𝑛
 and 

𝜕𝑠

𝜕𝑥𝑛
, as shown in (2.16, 2.17), which is 

significant for further calculation, because the Jacobian matrix is an implicit function of 

𝑆(𝑑̅𝑛). 

The iteration map could help to study the stability of the system, we can calculate 

the eigenvalues near the equilibrium point, analyze the instability process of the regular 

state of the system when some parameters change. 

Let the jacobian matrix as 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑥𝑛, 𝑑̅𝑛), then it will be: 

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑥𝑛, 𝑑̅𝑛) =
𝜕𝑥𝑛+1

𝜕𝑥𝑛
=

𝜕𝑓

𝜕𝑥𝑛
−

𝜕𝑓

𝜕𝑑̅𝑛

(
𝜕𝑠

𝜕𝑑̅𝑛

)

−1
𝜕𝑠

𝜕𝑥𝑛
2.18 

Where, 

𝜕𝑓

𝜕𝑥𝑛
= 𝑁𝑜𝑛 (1 − 𝑑̅𝑛)𝑁𝑜𝑓𝑓 (𝑑̅𝑛) 2.19 

𝜕𝑓

𝜕𝑑̅𝑛

= ⌊
𝜕𝑁𝑜𝑛 (1 − 𝑑̅𝑛)

𝜕𝑑̅𝑛

𝑁𝑜𝑓𝑓 (𝑑̅𝑛) + 𝑁𝑜𝑛 (1 − 𝑑̅𝑛)
𝜕𝑁𝑜𝑓𝑓 (𝑑̅𝑛)

𝜕𝑑̅𝑛

⌋ 𝑥𝑛 

+ ⌊
𝜕𝑁𝑜𝑛 (1 − 𝑑̅𝑛)

𝜕𝑑̅𝑛

𝑁𝑜𝑓𝑓 (𝑑̅𝑛) + 𝑁𝑜𝑛 (1 − 𝑑̅𝑛)
𝜕𝑀𝑜𝑓𝑓 (𝑑̅𝑛)

𝜕𝑑̅𝑛

+
𝜕𝑀𝑜𝑓𝑓 (𝑑̅𝑛)

𝜕𝑑̅𝑛

⌋ 𝑉𝑖𝑛 2.20 

Then the eigenvalue for the equilibrium point can be calculated as: 

𝑑𝑒𝑡[λI −  𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛(𝑥𝑛, 𝑑̅𝑛)]|
𝑥𝑛=𝑥𝑄,𝑑̅𝑛=𝑑̅𝑄

= 0 2.21 

Where the 𝑥𝑄, 𝑑̅𝑄 are the equilibrium point of the iterative mapping, it could be 

obtained by simulate the iterative mapping in 𝑛𝑇𝑠 series until the system goes stable. 

Jacobian matrix stability criteria 

Characteristic multipliers are the eigenvalues of the Jacobian of a discrete-time 

iterative system, the system is locally stable if all the characteristic multipliers have a 

magnitude of less than 1 (in unity cycle); when the first multiplier go out of the unity 
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cycle, the bifurcation begins, the eigenvalue of the discrete-time map 𝑓[𝑓(𝑥𝑛, 𝐴)] is set 

at the -1. 

Using 𝑉𝑖𝑛 as the bifurcation parameter, we can plot the eigenvalues of the Jacobian 

matrix for the specific iterative map, as shown in figure 2.6. 

 
Figure 2.6. loci of characteristic multipliers as 𝑽𝒊𝒏 varies 

As shown in Figure 2.6, as the input voltage 𝑉𝑖𝑛 increases, the two eigenvalues, one 

at second quadrant and one at third quadrant, will approach the real axis along a circle 

with a radius of approximately 0.82. After reaching the real axis, they will be separated. 

The eigenvalue on the left will finally leave the unit circle, and the corresponding input 

voltage 𝑉𝑖𝑛 is 24.5 V (verifies the complete state equation using Matlab), which 

indicates that the 1-cycle of the converter begins to destabilize, and a first fork 

bifurcation occurs. 

2.5 Complex behavior verification using PSIM 

Finally, we can use circuit analysis tools like PSIM to perform the above analysis, 

the result data was stored in .cvs format files and plot in the matlab, using state space 

Unity Circle 

Bifurcation happens 
 Vin =24.516V 

(0,0) 
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phase portrait to perform the verification result, as shown in figure 2.7 below. Apart from 

different 𝑉𝑖𝑛, all the circuit elements are identical 

 

 

  

  
Figure 2.7. Phase portrait and key waveform as 𝑽𝒊𝒏 varies – under PSIM simulation 

(a) 𝑽𝒊𝒏 = 𝟐𝟎𝑽 (b) 𝑽𝒊𝒏 = 𝟐𝟓𝑽 (c) 𝑽𝒊𝒏 = 𝟑𝟎𝑽 (d) 𝑽𝒊𝒏 = 𝟑𝟓𝑽 

 

We also chose a particular condition of 𝑉𝑖𝑛=27V, R =22Ω, L=20mH, C=47uF, 

fs=2500Hz, K=8.2, to compare the result of matlab with PSIM, the result shows 

satisfying consistence in figure 2.8, this further verify the accuracy of complete state 

equation model. 
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Figure 2.8. Comparation for PSIM and Matalab under a same working condition 
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3. Complex behavior and its analysis in DCM VCM buck converter 

In the previews section, analyzing for CCM buck converters with both complete state 

equation and discrete iterative map have been detailed described. or the case of 

discontinuous conduction mode buck converters, the situation will be very similar.  

Since complete sate equation methods has been verified its accuracy, we leave this 

method open for the following analysis, only concentrate on the how to generate the 

iterative mapping. 

Before analysis there are some constrains should be noted first, firstly, as shown in 

(3.1), the inductance L of the DCM buck converter must be small enough to keep the 

circuit works in discontinuous-mode; secondly since the solution to each of state can be 

expressed explicitly in terms of the respective transition matrix, simulation of exact time-

domain wave forms is possible using the below piecewise switched model. The following 

simulations will be based on this model. 

𝐿 <
(1 − 𝐷)𝑅𝑇𝑠

2
3.1 

Where the 𝐷, 𝑅, 𝑇𝑠, are the Duty cycle, switching frequency, and load resister value 

of the buck converter, respectively. 

3.1 Discrete iteration mapping for DCM Buck 

The procedure for deriving iterative maps is conducted as follows. We still need to 

derive the state equations for the system in advance, assuming the state-variables as 𝑥 =

[𝑉𝑜  𝑖𝐿]
𝑇, write down the state equations for all involving circuit topologies: 

𝑥̇ =  [
−/𝑅𝐶 1/𝐶
−1/𝐿 0

] 𝑥 + [
0

1/𝐿
] 𝑉𝑖𝑛 = 𝐴1

 
𝑥 + 𝐵1𝑉𝑖𝑛   (𝑡𝑛 < 𝑡 < 𝑡𝑛 + 𝑡1) 3.2 

𝑥̇ =  [
−/𝑅𝐶 1/𝐶
−1/𝐿 0

] 𝑥 + [
0
0
] 𝑉𝑖𝑛 = 𝐴2

 
𝑥 + 𝐵2𝑉𝑖𝑛   (𝑡𝑛 + 𝑡1 < 𝑡 < 𝑡𝑛 + 𝑡1 + 𝑡2) 3.3 

𝑥̇ =  [
−/𝑅𝐶 0

0 0
] 𝑥 + [

0
1/𝐿

] 𝑉𝑖𝑛 = 𝐴3𝑥 + 𝐵3𝑉𝑖𝑛     (𝑡𝑛 + 𝑡1 + 𝑡2 < 𝑡 < 𝑡𝑛+1) 3.4 

Where the matrix 𝐴𝑖 and 𝐵𝑖 are the coefficient matrix of the system, 𝑡1, 𝑡2, 𝑡3, are 

the three different operation intervals for DCM buck converter, they are defined as 

follows: 
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𝑡1 = 𝑑1𝑛𝑇𝑠 (𝑤ℎ𝑒𝑛 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑠 𝑛𝑒𝑎𝑟 − 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒) 

𝑡2 = 𝑑2𝑛𝑇𝑠 (𝑤ℎ𝑒𝑛 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑠 𝑛𝑒𝑎𝑟 − 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑟𝑒𝑎𝑠𝑒) 

𝑡3 = 𝑑3𝑛𝑇𝑠 (𝑤ℎ𝑒𝑛 𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑠 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑒𝑑 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑙𝑠 0 ) 

Obviously, we have 𝑑1𝑛 + 𝑑2𝑛 + 𝑑3𝑛 = 0 for any cases, then we can solving the 

first order differential equation in (3.2, 3.3, 3.4), to generate the time domain expressions 

for the state-value when each state ends, after simplification and substitution as 

performed in section 2.4, we can obtained the following iterative map: 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑑1𝑛) = 𝑁3 (𝑑3𝑛)𝑁2 (𝑑2𝑛)𝑁1 (𝑑1𝑛)𝑥𝑛 

+[𝑁3 (𝑑3𝑛)𝑁2 (𝑑2𝑛)𝑀1(𝑑1𝑛) + 𝑁3 (𝑑3𝑛)𝑀2(𝑑2𝑛) + 𝑀3(𝑑3𝑛)]𝑉𝑖𝑛 3.5 

Where each coefficient matrix will be (i = 1,2,3): 

𝑁𝑖 (𝑑𝑖𝑛) =  𝑒𝐴𝑖𝑑𝑖𝑛𝑇𝑠 

𝑀𝑖 (𝑑𝑖𝑛) = 𝐴𝑖
−1 (𝑒𝐴𝑖𝑑𝑖𝑛𝑇𝑠 − 𝐼)𝐵𝑖 

It should note that the 𝑑𝑖𝑛 (i=1,2,3) is a time varying parameter corresponding to the 

sate-variables 𝑥, as the control unit shows in the figure 3.1, in VCM buck converter, we 

have: 

𝑑1𝑛 = 𝐷 − 𝐾(𝑉𝑜𝑛 − 𝑉𝑟𝑒𝑓) 3.6 

 
Figure 3.1 Circuit diagram of the DCM buck converter 

Approximation in discrete iteration mapping 

Clearly this is not an easy mapping we could calculate, so we can use some enforcing 

conditions that applying for DCM buck specifically [6], since the switching period is much 

longer than the capacitance-load-resistance time constant in DCM buck converters, for the 

inductor value at each switching iteration begins, we have 𝑖𝑛 = 𝑖𝐿(𝑡𝑛) = 0, accordingly, 

the duty cycle has the relation of: 
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𝑑2𝑛

𝑑1𝑛
=

𝑉𝑖𝑛 − 𝑉𝑜

𝑉𝑜
3.6 

Besides, rather than solving the transition matrix 𝑁𝑖 (𝑑𝑖𝑛), 𝑀𝑖 (𝑑𝑖𝑛), a finite series 

approximation can be adopted to decrease the calculation complexity, in fact the first two 

terms is accurate enough for the evaluation of stability, which can be written as: 

𝑒𝐴𝑖𝑡 = 𝐼 + 𝐴𝑖𝑡 +
1

2
(𝐴𝑖𝑡)

2 +
1

3
(𝐴𝑖𝑡)

3 + ⋯ 3.7 

With these two particulars constrains, and focus on one part of state variables (𝑖𝑛 = 0 

is a constant could be overlooked, so we only need to observe 𝑉𝑜𝑛), we can simplify and 

approximate the system to the following form:  

𝑉𝑜𝑛+1 = 𝑔(𝑉𝑜𝑛, 𝑑1𝑛) = 𝛼𝑉𝑜𝑛 + 𝛽
𝑑1𝑛

2 𝑉𝑖𝑛(𝑉𝑖𝑛 − 𝑉𝑜𝑛 )

𝑉𝑜𝑛 
3.8 

Where the coefficients are: 

 𝛼 = 1 −
𝑇𝑠

𝑅𝐶
+

𝑇𝑠
2

2(𝑅𝐶)2
,  𝛽 =

𝑅𝑇𝑠
2

2𝐿𝐶𝑅
 

Also, it should be reminded that 𝑑1𝑛 will be substituted by ℎ1𝑛 because the duty 

cycle could saturate, thus we add another constrains as: 

ℎ1𝑛 = {

0      𝑤ℎ𝑒𝑛 𝑑1𝑛 < 0 
𝑑1𝑛    𝑓𝑜𝑟 0 < 𝑑1𝑛 < 1
1      𝑤ℎ𝑒𝑛 𝑑1𝑛 > 1

3.9 

Since the system is open loop stable, so 𝑉𝑜𝑛+1= 𝑉𝑜𝑛 when 𝑑1𝑛
2 → 𝐷, then we can 

calculate the duty cycle based on known circuit parameters: 

𝐷 = √
(1 − 𝛼)𝑉𝑜𝑛

2

𝛽𝑉𝑖𝑛(𝑉𝑖𝑛 − 𝑉𝑜𝑛 )
3.10 

Set the 𝑉𝑜𝑛  as the reference value 𝑉𝑟𝑒𝑓  as we desired, then we will have all the 

parameters we need to complete the discrete iterative map. 

3.2 Stability analysis cobweb map and bifurcation diagram 

As soon as the iterative mapping is constructed, we can use the virtualization tools to 

analysis the stability of the system. We chose cobweb map and bifurcation diagram as our 

visualizing tools; in fact, these two methods are mutual equivalent in mathematical. 
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The circuit elements value for the analyze are 𝑉𝑖𝑛 = 33𝑉, R =12.5Ω, L=208uH, 

C=222uF, fs=3000Hz, 𝑉𝑟𝑒𝑓 = 25𝑉. the discrete iteration mapping predicts feedback gain 

value will bifurcate the system. 

a). System behavior predicts using cobweb map 

Additional reminder for cobweb map is that the selection of initial condition, since it 

was produced by combining the iterative map in (3.8) and the duty cycle constrain in 

(3.6), and this constrain is only valid when 0 < 𝑑1𝑛 < 1, thus the initial condition should 

not deviate too much from the equilibrium when system is finally stable. See attached 

documents, we chose a very close initial condition of 𝑉𝑜1 = 24𝑉, only after 1-2 

iteration, the discrete state value will drop into the fixed point or the limit orbits. 

 

(a) 𝑲 = 𝟎. 𝟏        (b) 𝑲 = 𝟎. 𝟏𝟑 

 
(c) 𝑲 = 𝟎. 𝟏𝟔𝟓          (d) 𝑲 = 𝟎. 𝟐 

Figure 3.2 Cobweb map for the DCM buck converter when feedback Gain varies 

(a) 𝑲 = 𝟎. 𝟏 (b) 𝑲 = 𝟎. 𝟏𝟑 (c) 𝑲 = 𝟎. 𝟏𝟔𝟓 (d) 𝑲 = 𝟎. 𝟐 

 

Stable fixed Point Period-2 subharmonic 

 

Period-4 subharmonic orbit 
Chaotic operation 
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From the cobweb map we can find that with the increasing of feedback gain, the 

output voltage will go through stable, period-doubling, period-4 and finally goes chaotic, 

indicating that inappropriate large feedback gain may cause system unstable, but the 

threshold for behavior evolution is still unknown, so we need bifurcation diagram to 

further predicts the change. 

b). System behavior predicts using bifurcation diagram 

By substituting the known circuit parameters to the simplified iterative mapping in 

(3.8), we can rewrite in numerical term: 

𝑉𝑜𝑛+1 = 𝑔(𝑉𝑜𝑛, 𝑑1𝑛) = 0.8872𝑉𝑜𝑛 + 1.202
ℎ1𝑛

2 33(33 − 𝑉𝑜𝑛 )

𝑉𝑜𝑛 
3.11 

ℎ1𝑛 = {

0                                                         𝑤ℎ𝑒𝑛 𝑑1𝑛 < 0 

𝑑1𝑛 = 0.4713 − 𝐾(𝑉𝑜𝑛 − 25)   𝑓𝑜𝑟 0 < 𝑑1𝑛 < 1
1                                                         𝑤ℎ𝑒𝑛 𝑑1𝑛 > 1

3.12 

As shown clearly, the system has a stable fixed point in the sub-critical case, and a 

stable subharmonic orbit in super-critical cases, and first bifurcate at about 0.136; when 

the feedback gain is grater then 0.17 approximately, the system will go chaotic. From the 

bifurcation diagram, the bifurcation threshold can be easily estimated. 

 
Figure 3.3 Bifurcation diagram using the approximate iterative mapping of parameter K 
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3.3 Determine threshold for the first fork bifurcation 

In terms of the stable closed-loop system with one single steady-state fixed point, the 

Taylor series around the equilibrium is a helpful tool to determine the threshold of 

bifurcation happens: 

𝛥𝑉𝑜𝑛+1 = ∑
1

𝑘!

∞

𝑘=1

𝜕𝑔(𝑉𝑜𝑛)

𝜕𝑉𝑜𝑛
𝑘 |

𝑉𝑜=𝑉𝑟𝑒𝑓

(𝛥𝑉𝑜𝑛)𝑘 3.13 

Assuming 0 < 𝑑1𝑛<1, then we can rule out the saturation nonlinearity, before the 

first fork bifurcation happens, the system should strictly stable according to Floquet 

theory, therefore, after omitting the high-level terms (if don’t omitting then the threshold 

will be slightly larger): 

|
𝜕𝑉𝑜𝑛+1

𝜕𝑉𝑜𝑛
| = |

𝜕𝑔(𝑉𝑜𝑛)

𝜕𝑉𝑜𝑛
|
𝑉𝑜=𝑉𝑟𝑒𝑓

| ≤ 1 3.14   

After simplifying (3.14), we can obtain the approximate characteristic multiplier 

boundary region, this can be written as: 

|𝛼 − 𝛽
𝐷𝑉𝑖𝑛[2𝐾𝑉𝑟𝑒𝑓(𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓 ) + 𝐷𝑉𝑖𝑛]

𝑉𝑟𝑒𝑓
2 | ≤ 1 3.15 

After calculation we can obtain 𝑲c=0.1335, go back to the bifurcation plot using 

iterative map, the first fork bifurcation can be predicted accurately. 

3.4 Complex behavior verification using PSIM 

Accordingly, we can use PSIM to perform the above analysis, the result data was 

stored in .cvs format files and plot in the Matlab, using state space phase portrait to 

perform the verification result, as shown in figure 3.4 below.  

Like CCM buck converter, DCM buck converter can go through bifurcation with 

multiple parameters, we only choose the feedback gain changing from 0.1~0.2 to verify 

our analysis in section 3 above, the state variables will go through one/two/four period 

and finally lead to chaos as predicted, it confirmed the accuracy of the modeling of 

iterative mapping and once again give a promising result. 
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(b) 𝑲 = 𝟎. 𝟏        (b) 𝑲 = 𝟎. 𝟏𝟑6 

   

(c) 𝑲 = 𝟎. 𝟏𝟔          (d) 𝑲 = 𝟎. 𝟐 

Figure 3.4 Phase portrait and key waveform as 𝑽𝒊𝒏 varies – under PSIM simulation 

(a) 𝑲 = 𝟎. 𝟏 (b) 𝑲 = 𝟎. 𝟏𝟑𝟔 (c) 𝑲 = 𝟎. 𝟏𝟔 (d) 𝑲 = 𝟎. 𝟐 
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4. Possible applications of complex behavior buck converter 

Cascade converters in renewable energy generation are usually cascaded from two 

sub-converters. The output voltage of the front end is usually the ripple dc voltage, which 

serves as the input voltage of the downstream dc–dc converters. The stability of a dc–dc 

converter with periodic input ripple voltage can perform chaotic behavior. 

 



DYNAMIC ANALYSIS OF VOLTAGE MODE BUCK CONVERTER 

When the converter is in bifurcation state, the ripple of output voltage and inductance 

current increases, introducing unpredictable distribution of higher order harmonics even 

add up stresses to switches or passive components. Therefore, the research in this article 

can provide better guidance for industrial application of converter. 

Thanks to the mathematical tools and various virtualization method, the complex 

behavior and stability in voltage controlled buck converters can be analyzed by iterative 

mapping and Jacobian matrix eigenvalues as this report did. The reference paper did the 

process under the same criteria, by analyzing the bifurcations, Jacobians and 

characteristic multipliers, the paper draws a good guiding for compensation design and 

phase shift control. 

5. Conclusion 

(1) Buck Converter can have very complex behavior coming from varying parameters: 

Circuit components values, Input voltage; as well as control parameters, feedback 

gains, and reference. 

(2) Two categories of methods are widely used to predicts and analysis the complex 

behavior: complete numeric state equations and discrete iterative mapping, both has 

their pros and cons, but mutually complementary in the whole analysis. 

(3) Virtualization techniques to observe the chaotic system are various, including loci of 

multipliers, cobweb map, bifurcation diagram, Poincare map, and phase portrait, 

these techniques are detailed studied in the report with examples. 
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